... | ... | @@ -190,42 +190,38 @@ Opérations sur les polynômes |
|
|
|
|
|
>>>
|
|
|
---
|
|
|
1. Réduire et ordonner : $\dfrac{2x^3}{3} \cdot \dfrac{9xy^2}{4} - \dfrac{x^4y^2}{2} + \dfrac{3x^3y}{2} \cdot \dfrac{2y}{3}$
|
|
|
1. Réduire et ordonner : $4x^2y \cdot (-3xy^2) \cdot 2y =$
|
|
|
---
|
|
|
2. Simplifier : $(2x^2y^{-1})^3 \cdot (x^{-1}y^2)^2 \cdot 3xy^{-2}$
|
|
|
2. Réduire et ordonner : $\dfrac{3a^2b}{2} \cdot \dfrac{4ab^3}{5} =$
|
|
|
---
|
|
|
3. Réduire : $\dfrac{4x^3y^2 - 6x^2y^3}{2xy} + \dfrac{3x^2y - 9xy^2}{3y}$
|
|
|
3. Réduire et ordonner : $(2x^2y)^3 \cdot (-xy^2) =$
|
|
|
---
|
|
|
4. Calculer : $(-2x^2y)^3 \cdot (3xy^{-2})^2 \cdot \dfrac{x^{-1}y^3}{4}$
|
|
|
4. Réduire et ordonner : $\dfrac{6x^3y^2}{2xy} \cdot \dfrac{4xy^3}{3x^2} =$
|
|
|
---
|
|
|
5. Ordonner selon $x$ décroissant : $\dfrac{3xy^2}{2} - \dfrac{x^3}{4} + \dfrac{2x^2y}{3} - \dfrac{5y^3}{6} + x^{-1}y$
|
|
|
5. Réduire et ordonner : $3x^2 + 2xy - x^2 + 5xy - 2y^2 + x^2 =$
|
|
|
---
|
|
|
6. Réduire et ordonner : $2ab^3 + a^3b - 5aa + 3a^3b - ab^3 =$
|
|
|
---
|
|
|
7. Réduire et ordonner : $5x^3 - 2x + 3x^2 - x^3 + 4x - x^2 + 1 =$
|
|
|
---
|
|
|
>>>
|
|
|
|
|
|
<details>
|
|
|
<summary>:check_mark_button: Solutions Niveau B</summary>
|
|
|
|
|
|
1. $\dfrac{2x^3}{3} \cdot \dfrac{9xy^2}{4} - \dfrac{x^4y^2}{2} + \dfrac{3x^3y}{2} \cdot \dfrac{2y}{3}$
|
|
|
$= \dfrac{18x^4y^2}{12} - \dfrac{x^4y^2}{2} + \dfrac{6x^3y^2}{6}$
|
|
|
$= \dfrac{3x^4y^2}{2} - \dfrac{x^4y^2}{2} + x^3y^2$
|
|
|
$= \dfrac{2x^4y^2}{2} + x^3y^2 = x^4y^2 + x^3y^2 = x^3y^2(x + 1)$
|
|
|
1. $4x^2y \cdot (-3xy^2) \cdot 2y = (4 \cdot (-3) \cdot 2) \cdot x^{2+1} \cdot y^{1+2+1} = -24x^3y^4$
|
|
|
---
|
|
|
2. $\dfrac{3a^2b}{2} \cdot \dfrac{4ab^3}{5} = \dfrac{3 \cdot 4 \cdot a^{2+1} \cdot b^{1+3}}{2 \cdot 5} = \dfrac{12a^3b^4}{10} = \dfrac{6a^3b^4}{5}$
|
|
|
---
|
|
|
3. $(2x^2y)^3 \cdot (-xy^2) = 2^3x^6y^3 \cdot (-xy^2) = 8x^6y^3 \cdot (-xy^2) = -8x^7y^5$
|
|
|
---
|
|
|
2. $(2x^2y^{-1})^3 \cdot (x^{-1}y^2)^2 \cdot 3xy^{-2}$
|
|
|
$= 2^3x^6y^{-3} \cdot x^{-2}y^4 \cdot 3xy^{-2}$
|
|
|
$= 8x^6y^{-3} \cdot x^{-2}y^4 \cdot 3xy^{-2}$
|
|
|
$= (8 \cdot 3)x^{6-2+1}y^{-3+4-2} = 24x^5y^{-1} = \dfrac{24x^5}{y}$
|
|
|
4. $\dfrac{6x^3y^2}{2xy} \cdot \dfrac{4xy^3}{3x^2} = \dfrac{6x^3y^2 \cdot 4xy^3}{2xy \cdot 3x^2} = \dfrac{24x^4y^5}{6x^3y} = 4xy^4$
|
|
|
---
|
|
|
3. $\dfrac{4x^3y^2 - 6x^2y^3}{2xy} + \dfrac{3x^2y - 9xy^2}{3y}$
|
|
|
$= \dfrac{4x^3y^2}{2xy} - \dfrac{6x^2y^3}{2xy} + \dfrac{3x^2y}{3y} - \dfrac{9xy^2}{3y}$
|
|
|
$= 2x^2y - 3xy^2 + x^2 - 3xy = x^2(2y + 1) - 3xy(y + 1)$
|
|
|
5. $3x^2 + 2xy - x^2 + 5xy - 2y^2 + x^2 = (3-1+1)x^2 + (2+5)xy - 2y^2 = 3x^2 + 7xy - 2y^2$
|
|
|
---
|
|
|
4. $(-2x^2y)^3 \cdot (3xy^{-2})^2 \cdot \dfrac{x^{-1}y^3}{4}$
|
|
|
$= (-2)^3x^6y^3 \cdot 3^2x^2y^{-4} \cdot \dfrac{x^{-1}y^3}{4}$
|
|
|
$= -8x^6y^3 \cdot 9x^2y^{-4} \cdot \dfrac{x^{-1}y^3}{4}$
|
|
|
$= \dfrac{-8 \cdot 9}{4}x^{6+2-1}y^{3-4+3} = -18x^7y^2$
|
|
|
6. $2ab^3 + a^3b - 5aa + 3a^3b - ab^3 = (2-1)ab^3 + (1+3)a^3b - 5a^2 = ab^3 + 4a^3b - 5a^2 = 4a^3b - 5a^2 + ab^3$
|
|
|
---
|
|
|
5. $\dfrac{3xy^2}{2} - \dfrac{x^3}{4} + \dfrac{2x^2y}{3} - \dfrac{5y^3}{6} + x^{-1}y$
|
|
|
Ordre décroissant selon $x$ : $-\dfrac{x^3}{4} + \dfrac{2x^2y}{3} + \dfrac{3xy^2}{2} + x^{-1}y - \dfrac{5y^3}{6}$
|
|
|
7. $5x^3 - 2x + 3x^2 - x^3 + 4x - x^2 + 1 = (5-1)x^3 + (3-1)x^2 + (-2+4)x + 1 = 4x^3 + 2x^2 + 2x + 1$
|
|
|
|
|
|
</details>
|
|
|
|
... | ... | @@ -233,67 +229,43 @@ Opérations sur les polynômes |
|
|
|
|
|
>>>
|
|
|
---
|
|
|
1. Simplifier : $\dfrac{(2x^{-2}y^3)^{-2} \cdot (3x^3y^{-1})^2}{(x^{-1}y^2)^{-3} \cdot (2xy^{-2})^2} \cdot \dfrac{4x^{-1}y}{(xy)^{-2}}$
|
|
|
1. Réduire et ordonner : $\dfrac{2a^2b}{3} \cdot \dfrac{9ab^3}{4a^2} \cdot \dfrac{6a^3}{5b^2} =$
|
|
|
---
|
|
|
2. Réduire et factoriser : $\dfrac{x^3y^2 - 2x^2y^3}{xy^2} - \dfrac{3x^2y - 6xy^2}{xy} + \dfrac{4x^4y^3 - 8x^3y^4}{2x^2y^3}$
|
|
|
2. Réduire et ordonner : $(3x^2y^3)^2 \cdot \dfrac{2xy}{9x^3y^4} \cdot (-4x^2y) =$
|
|
|
---
|
|
|
3. Développer et réduire : $(2x^{-1}y^2 + 3xy^{-1})^2 - (x^{-1}y^2)^2 \cdot 4$
|
|
|
3. Réduire et ordonner : $\left(\dfrac{2ab^2}{3}\right)^3 \cdot \dfrac{9a^2}{4b^3} \cdot \dfrac{2b}{a^2} =$
|
|
|
---
|
|
|
4. Simplifier l'expression : $\left(\dfrac{(2x^2y^{-1})^3 \cdot (xy^2)^{-2}}{(x^{-1}y)^{-2} \cdot (3xy^{-1})^2}\right)^{-1} \cdot \dfrac{(2xy)^{-3}}{(x^{-2}y^{-1})^{-2}}$
|
|
|
4. Réduire et ordonner : $\dfrac{4x^3y^2z}{3xy} \cdot \dfrac{6xyz^2}{8x^2z} \cdot \dfrac{9x^2y}{2yz^2} =$
|
|
|
---
|
|
|
5. Ordonner selon les puissances décroissantes de $x$ et factoriser : $\dfrac{3x^3y^2}{2} - \dfrac{6x^2y^3}{4} + \dfrac{9xy^4}{6} - \dfrac{12y^5}{8} + \dfrac{x^4y}{2} - \dfrac{2x^2y^3}{3}$
|
|
|
5. Réduire et ordonner : $2x^3y - 3x^2y^2 + xy^3 - x^3y + 2x^2y^2 - 3xy^3 + 5x^3y - xy^3 =$
|
|
|
---
|
|
|
6. Réduire et ordonner : $\dfrac{3m^2n}{2} + \dfrac{4mn^2}{3} - \dfrac{2m^3}{5} + \dfrac{5m^2n}{4} - \dfrac{8mn^2}{6} + \dfrac{m^3}{10} =$
|
|
|
---
|
|
|
7. Réduire et ordonner : $a^2b(2ab^2) - 3ab(a^2b) + 5a^3b^2 - 2a^2b \cdot ab + 4ab \cdot a^2b =$
|
|
|
---
|
|
|
>>>
|
|
|
|
|
|
<details>
|
|
|
<summary>:check_mark_button: Solutions Niveau C</summary>
|
|
|
|
|
|
1. $\dfrac{(2x^{-2}y^3)^{-2} \cdot (3x^3y^{-1})^2}{(x^{-1}y^2)^{-3} \cdot (2xy^{-2})^2} \cdot \dfrac{4x^{-1}y}{(xy)^{-2}}$
|
|
|
|
|
|
Numérateur : $(2x^{-2}y^3)^{-2} \cdot (3x^3y^{-1})^2 = 2^{-2}x^4y^{-6} \cdot 9x^6y^{-2} = \dfrac{9x^{10}y^{-8}}{4}$
|
|
|
|
|
|
Dénominateur : $(x^{-1}y^2)^{-3} \cdot (2xy^{-2})^2 = x^3y^{-6} \cdot 4x^2y^{-4} = 4x^5y^{-10}$
|
|
|
|
|
|
Fraction supplémentaire : $\dfrac{4x^{-1}y}{(xy)^{-2}} = \dfrac{4x^{-1}y}{x^{-2}y^{-2}} = 4xy^3$
|
|
|
|
|
|
Résultat : $\dfrac{9x^{10}y^{-8}}{4} \cdot \dfrac{1}{4x^5y^{-10}} \cdot 4xy^3 = \dfrac{9x^{10}y^{-8} \cdot xy^3}{4x^5y^{-10}} = \dfrac{9x^{11}y^{-5}}{4x^5y^{-10}} = \dfrac{9x^6y^5}{4}$
|
|
|
1. $\dfrac{2a^2b}{3} \cdot \dfrac{9ab^3}{4a^2} \cdot \dfrac{6a^3}{5b^2} = \dfrac{2 \cdot 9 \cdot 6 \cdot a^{2+1+3} \cdot b^{1+3-2}}{3 \cdot 4 \cdot 5 \cdot a^2} = \dfrac{108a^6b^2}{60a^2} = \dfrac{108a^4b^2}{60} = \dfrac{9a^4b^2}{5}$
|
|
|
---
|
|
|
2. $\dfrac{x^3y^2 - 2x^2y^3}{xy^2} - \dfrac{3x^2y - 6xy^2}{xy} + \dfrac{4x^4y^3 - 8x^3y^4}{2x^2y^3}$
|
|
|
|
|
|
$= \dfrac{x^3y^2}{xy^2} - \dfrac{2x^2y^3}{xy^2} - \dfrac{3x^2y}{xy} + \dfrac{6xy^2}{xy} + \dfrac{4x^4y^3}{2x^2y^3} - \dfrac{8x^3y^4}{2x^2y^3}$
|
|
|
|
|
|
$= x^2 - 2xy - 3x + 6y + 2x^2 - 4xy$
|
|
|
|
|
|
$= 3x^2 - 6xy - 3x + 6y = 3x(x - 2y - 1) + 6y = 3(x^2 - 2xy - x + 2y)$
|
|
|
|
|
|
$= 3[x(x - 2y - 1) + 2y] = 3[x(x - 1) - 2y(x - 1)] = 3(x - 1)(x - 2y)$
|
|
|
2. $(3x^2y^3)^2 \cdot \dfrac{2xy}{9x^3y^4} \cdot (-4x^2y) = 9x^4y^6 \cdot \dfrac{2xy}{9x^3y^4} \cdot (-4x^2y) = 9x^4y^6 \cdot \dfrac{-8x^3y^2}{9x^3y^4} = 9x^4y^6 \cdot \dfrac{-8}{9y^2} = -8x^4y^4$
|
|
|
---
|
|
|
3. $(2x^{-1}y^2 + 3xy^{-1})^2 - (x^{-1}y^2)^2 \cdot 4$
|
|
|
|
|
|
$= (2x^{-1}y^2)^2 + 2 \cdot 2x^{-1}y^2 \cdot 3xy^{-1} + (3xy^{-1})^2 - 4x^{-2}y^4$
|
|
|
|
|
|
$= 4x^{-2}y^4 + 12y + 9x^2y^{-2} - 4x^{-2}y^4$
|
|
|
|
|
|
$= 12y + 9x^2y^{-2} = 12y + \dfrac{9x^2}{y^2}$
|
|
|
3. $\left(\dfrac{2ab^2}{3}\right)^3 \cdot \dfrac{9a^2}{4b^3} \cdot \dfrac{2b}{a^2} = \dfrac{8a^3b^6}{27} \cdot \dfrac{9a^2}{4b^3} \cdot \dfrac{2b}{a^2} = \dfrac{8 \cdot 9 \cdot 2 \cdot a^{3+2-2} \cdot b^{6-3+1}}{27 \cdot 4} = \dfrac{144a^3b^4}{108} = \dfrac{4a^3b^4}{3}$
|
|
|
---
|
|
|
4. $\left(\dfrac{(2x^2y^{-1})^3 \cdot (xy^2)^{-2}}{(x^{-1}y)^{-2} \cdot (3xy^{-1})^2}\right)^{-1} \cdot \dfrac{(2xy)^{-3}}{(x^{-2}y^{-1})^{-2}}$
|
|
|
|
|
|
Fraction intérieure : $\dfrac{8x^6y^{-3} \cdot x^{-2}y^{-4}}{x^2y^{-2} \cdot 9x^2y^{-2}} = \dfrac{8x^4y^{-7}}{9x^4y^{-4}} = \dfrac{8y^{-3}}{9y^{-4}} = \dfrac{8y}{9}$
|
|
|
|
|
|
Inverse : $\left(\dfrac{8y}{9}\right)^{-1} = \dfrac{9}{8y}$
|
|
|
|
|
|
Fraction finale : $\dfrac{(2xy)^{-3}}{(x^{-2}y^{-1})^{-2}} = \dfrac{8^{-1}x^{-3}y^{-3}}{x^4y^2} = \dfrac{1}{8x^7y^5}$
|
|
|
|
|
|
Résultat : $\dfrac{9}{8y} \cdot \dfrac{1}{8x^7y^5} = \dfrac{9}{64x^7y^6}$
|
|
|
4. $\dfrac{4x^3y^2z}{3xy} \cdot \dfrac{6xyz^2}{8x^2z} \cdot \dfrac{9x^2y}{2yz^2} = \dfrac{4 \cdot 6 \cdot 9 \cdot x^{3+1+2} \cdot y^{2+1+1} \cdot z^{1+2-2}}{3 \cdot 8 \cdot 2 \cdot x^{1+2} \cdot y^{1+1} \cdot z^{1+2}} = \dfrac{216x^6y^4z}{48x^3y^2z^3} = \dfrac{216x^3y^2}{48z^2} = \dfrac{9x^3y^2}{2z^2}$
|
|
|
---
|
|
|
5. $\dfrac{3x^3y^2}{2} - \dfrac{6x^2y^3}{4} + \dfrac{9xy^4}{6} - \dfrac{12y^5}{8} + \dfrac{x^4y}{2} - \dfrac{2x^2y^3}{3}$
|
|
|
|
|
|
$= \dfrac{x^4y}{2} + \dfrac{3x^3y^2}{2} + x^2y^3\left(-\dfrac{6}{4} - \dfrac{2}{3}\right) + \dfrac{3xy^4}{2} - \dfrac{3y^5}{2}$
|
|
|
|
|
|
$= \dfrac{x^4y}{2} + \dfrac{3x^3y^2}{2} + x^2y^3\left(-\dfrac{3}{2} - \dfrac{2}{3}\right) + \dfrac{3xy^4}{2} - \dfrac{3y^5}{2}$
|
|
|
|
|
|
$= \dfrac{x^4y}{2} + \dfrac{3x^3y^2}{2} - \dfrac{13x^2y^3}{6} + \dfrac{3xy^4}{2} - \dfrac{3y^5}{2}$
|
|
|
|
|
|
Factorisation : $= \dfrac{y}{6}(3x^4 + 9x^3y - 13x^2y^2 + 9xy^3 - 9y^4)$
|
|
|
5. $2x^3y - 3x^2y^2 + xy^3 - x^3y + 2x^2y^2 - 3xy^3 + 5x^3y - xy^3$
|
|
|
$= (2-1+5)x^3y + (-3+2)x^2y^2 + (1-3-1)xy^3 = 6x^3y - x^2y^2 - 3xy^3$
|
|
|
---
|
|
|
6. $\dfrac{3m^2n}{2} + \dfrac{4mn^2}{3} - \dfrac{2m^3}{5} + \dfrac{5m^2n}{4} - \dfrac{8mn^2}{6} + \dfrac{m^3}{10}$
|
|
|
$= m^2n\left(\dfrac{3}{2} + \dfrac{5}{4}\right) + mn^2\left(\dfrac{4}{3} - \dfrac{8}{6}\right) + m^3\left(-\dfrac{2}{5} + \dfrac{1}{10}\right)$
|
|
|
$= m^2n\left(\dfrac{6+5}{4}\right) + mn^2\left(\dfrac{4-4}{3}\right) + m^3\left(\dfrac{-4+1}{10}\right)$
|
|
|
$= \dfrac{11m^2n}{4} + 0 - \dfrac{3m^3}{10} = -\dfrac{3m^3}{10} + \dfrac{11m^2n}{4}$
|
|
|
---
|
|
|
7. $a^2b(2ab^2) - 3ab(a^2b) + 5a^3b^2 - 2a^2b \cdot ab + 4ab \cdot a^2b$
|
|
|
$= 2a^3b^3 - 3a^3b^2 + 5a^3b^2 - 2a^3b^2 + 4a^3b^2$
|
|
|
$= 2a^3b^3 + (-3+5-2+4)a^3b^2 = 2a^3b^3 + 4a^3b^2 = 2a^3b^2(b + 2)$
|
|
|
|
|
|
</details> |
|
|
\ No newline at end of file |